Error Robust Delay-Free Lossy Audio Coding Based on ADPCM

Gediminas Simkus; Martin Holters; Udo Zölzer
DAFx-2013 - Maynooth
We consider the problem of transmission errors in the well known adaptive differential pulse code modulation (ADPCM) system. A single transmission error destabilizes the reconstruction process at the decoder side in the ADPCM coding scheme if a non-leaky algorithm is used. We propose a delay-free and fixed rate of 3 bit/sample audio source coding scheme based on a robust prediction. The prediction of the backward ADPCM coding scheme is attained as a FIR filter in lattice structure. The prediction filter is derived as a reconstructed-signal-driven (RSD) or a predictionerror-driven (PED) lattice filter. A technique for an error robust RSD prediction is presented. This technique is employed in a robust audio coding scheme without use of any additional overhead. The proposed modified RSD-ADPCM is compared to the PED-ADPCM coding scheme by means of the objective audio quality. The proposed system yields good objective audio quality in the noise-free channels and provides robustness in the presence of transmission errors.
Download