Implementation of Arbitrary Linear Sound Synthesis Algorithms by Digital Wave Guide Structures

Stefan Petrausch; Rudolf Rabenstein
DAFx-2005 - Madrid
The Digital Wave Guide (DWG) method is one of the most popular techniques for digital sound synthesis via physical modeling. Due to the inherent solution of the wave equation by the structure of the DWG method, it provides a highly efficient algorithm for typical physical modeling problems. In this paper it will be shown, that it is possible to use this efficient structure for any existing linear sound synthesis algorithm. By a consequent description of discrete implementations with State Space Structures (SSSs), suitable linear state space transformations can be used to achieve the typical DWG structure from any given system. The proposed approach is demonstrated with two case studies, where a modal solution achieved with the Functional Transformation Method (FTM) is transformed to a DWG implementation. In the first example the solution of the lossless wave equation is transformed to a DWG structure, yielding an arbitrary size fractional delay filter. In another example a more elaborated model with dispersion and damping terms is transformed, resulting in a DWG model with parameter morphing features.
Download