Moog Ladder Filter Generalizations Based on State Variable Filters

Kurt James Werner; Russell McClellan
DAFx-2020 - Vienna (virtual)
We propose a new style of continuous-time filter design composed of a cascade of 2nd-order state variable filters (SVFs) and a global feedback path. This family of filters is parameterized by the SVF cutoff frequencies and resonances, as well as the global feedback amount. For the case of two identical SVFs in cascade and a specific value of the SVF resonance, the proposed design reduces to the well-known Moog ladder filter. For another resonance value, it approximates the Octave CAT filter. The resonance parameter can be used to create new filters as well. We study the pole loci and transfer functions of the SVF building block and entire filter. We focus in particular on the effect of the proposed parameterization on important aspects of the filter’s response, including the passband gain and cutoff frequency error. We also present the first in-depth study of the Octave CAT filter circuit.
Download