Analysis-and-manipulation approach to pitch and duration of musical instrument sounds without distorting timbral characteristics
This paper presents an analysis-manipulation method that can generate musical instrument sounds with arbitrary pitches and durations from the sound of a given musical instrument (called seed) without distorting its timbral characteristics. Based on psychoacoustical knowledge of the auditory effects of timbres, we defined timbral features based on the spectrogram of the sound of a musical instrument as (i) the relative amplitudes of the harmonic peaks, (ii) the distribution of the inharmonic component, and (iii) temporal envelopes. First, to analyze the timbral features of a seed, it was separated into harmonic and inharmonic components using Itoyama’s integrated model. For pitch manipulation, we took into account the pitch-dependency of features (i) and (ii). We predicted the values of each feature by using a cubic polynomial that approximated the distribution of these features over pitches. To manipulate duration, we focused on preserving feature (iii) in the attack and decay duration of a seed. Therefore, only steady durations were expanded or shrunk. In addition, we propose a method for reproducing the properties of vibrato. Experimental results demonstrated the quality of the synthesized sounds produced using our method. The spectral and MFCC distances between the synthesized sounds and actual sounds of 32 instruments were reduced by 64.70% and 32.31%, respectively.