Download Time-Variant Gray-Box Modeling of a Phaser Pedal A method to measure the response of a linear time-variant (LTV) audio system is presented. The proposed method uses a series of short chirps generated as the impulse response of several cascaded allpass filters. This test signal can measure the characteristics of an LTV system as a function of time. Results obtained from testing of this method on a guitar phaser pedal are presented. A proof of concept gray-box model of the measured system is produced based on partial knowledge about the internal structure of the pedal and on the spectral analysis of the measured responses. The temporal behavior of the digital model is shown to be very similar to that of the measured device. This demonstrates that it is possible to measure LTV analog audio systems and produce approximate virtual analog models based on these results.
Download Rounding Corners with BLAMP The use of the bandlimited ramp (BLAMP) function as an antialiasing tool for audio signals with sharp corners is presented. Discontinuities in the waveform of a signal or its derivatives require infinite bandwidth and are major sources of aliasing in the digital domain. A polynomial correction function is modeled after the ideal BLAMP function. This correction function can be used to treat aliasing caused by sharp edges or corners which translate into discontinuities in the first derivative of a signal. Four examples of cases where these discontinuities appear are discussed: synthesis of triangular waveforms, hard clipping, and half-wave and fullwave rectification. Results obtained show that the BLAMP function is a more efficient tool for alias reduction than oversampling. The polynomial BLAMP can reduce the level of aliasing components by up to 50 dB and improve the overall signal-to-noise ratio by about 20 dB. The proposed method can be incorporated into virtual analog models of musical systems.