Download Creating Endless Sounds This paper proposes signal processing methods to extend a stationary part of an audio signal endlessly. A frequent occasion is that there is not enough audio material to build a synthesizer, but an example sound must be extended or modified for more variability. Filtering of a white noise signal with a filter designed based on high-order linear prediction or concatenation of the example signal can produce convincing arbitrarily long sounds, such as ambient noise or musical tones, and can be interpreted as a spectral freeze technique without looping. It is shown that the random input signal will pump energy to the narrow resonances of the filter so that lively and realistic variations in the sound are generated. For realtime implementation, this paper proposes to replace white noise with velvet noise, as this reduces the number of operations by 90% or more, with respect to standard convolution, without affecting the sound quality, or by FFT convolution, which can be simplified to the randomization of spectral phase and only taking the inverse FFT. Examples of producing endless airplane cabin noise and piano tones based on a short example recording are studied. The proposed methods lead to a new way to generate audio material for music, films, and gaming.
Download Waveshaping with Norton Amplifiers: Modeling the Serge Triple Waveshaper The Serge Triple Waveshaper (TWS) is a synthesizer module designed in 1973 by Serge Tcherepnin, founder of Serge Modular Music Systems. It contains three identical waveshaping circuits that can be used to convert sawtooth waveforms into sine waves. However, its sonic capabilities extend well beyond this particular application. Each processing section in the Serge TWS is built around what is known as a Norton amplifier. These devices, unlike traditional operational amplifiers, operate on a current differencing principle and are featured in a handful of iconic musical circuits. This work provides an overview of Norton amplifiers within the context of virtual analog modeling and presents a digital model of the Serge TWS based on an analysis of the original circuit. Results obtained show the proposed model closely emulates the salient features of the original device and can be used to generate the complex waveforms that characterize “West Coast” synthesis.