Download Empirical Results for Adjusting Truncated Backpropagation Through Time While Training Neural Audio Effects
This paper investigates the optimization of Truncated Backpropagation Through Time (TBPTT) for training neural networks in digital audio effect modeling, with a focus on dynamic range compression. The study evaluates key TBPTT hyperparameters – sequence number, batch size, and sequence length – and their influence on model performance. Using a convolutional-recurrent architecture, we conduct extensive experiments across datasets with and without conditioning by user controls. Results demonstrate that carefully tuning these parameters enhances model accuracy and training stability, while also reducing computational demands. Objective evaluations confirm improved performance with optimized settings, while subjective listening tests indicate that the revised TBPTT configuration maintains high perceptual quality.