Download Training Neural Models of Nonlinear Multi-Port Elements Within Wave Digital Structures Through Discrete-Time Simulation Neural networks have been applied within the Wave Digital Filter
(WDF) framework as data-driven models for nonlinear multi-port
circuit elements. Conventionally, these models are trained on wave
variables obtained by sampling the current-voltage characteristic
of the considered nonlinear element before being incorporated into
the circuit WDF implementation. However, isolating multi-port
elements for this process can be challenging, as their nonlinear
behavior often depends on dynamic effects that emerge from interactions with the surrounding circuit. In this paper, we propose a
novel approach for training neural models of nonlinear multi-port
elements directly within a circuit’s Wave Digital (WD) discretetime implementation, relying solely on circuit input-output voltage
measurements. Exploiting the differentiability of WD simulations,
we embed the neural network into the simulation process and optimize its parameters using gradient-based methods by minimizing
a loss function defined over the circuit output voltage. Experimental results demonstrate the effectiveness of the proposed approach
in accurately capturing the nonlinear circuit behavior, while preserving the interpretability and modularity of WDFs.