Download Simplifying Antiderivative Antialiasing with Lookup Table Integration
Antiderivative Antialiasing (ADAA), has become a pivotal method for reducing aliasing when dealing with nonlinear function at audio rate. However, its implementation requires analytical computation of the antiderivative of the nonlinear function, which in practical cases can be challenging without a symbolic solver. Moreover, when the nonlinear function is given by measurements it must be approximated to get a symbolic description. In this paper, we propose a simple approach to ADAA for practical applications that employs numerical integration of lookup tables (LUTs) to approximate the antiderivative. This method eliminates the need for closed-form solutions, streamlining the ADAA implementation process in industrial applications. We analyze the trade-offs of this approach, highlighting its computational efficiency and ease of implementation while discussing the potential impact of numerical integration errors on aliasing performance. Experiments are conducted with static nonlinearities (tanh, a simple wavefolder and the Buchla 259 wavefolding circuit) and a stateful nonlinear system (the diode clipper).
Download Antialiasing in BBD Chips Using BLEP
Several methods exist in the literature to accurately simulate Bucket Brigade Device (BBD) chips, which are widely used in analog delay-based audio effects for their characteristic lo-fi sound, which is affected by noise, nonlinearities and aliasing. The latter is a desired quality, being typical of those chips. However, when simulating BBDs in a discrete-time domain environment, additional aliasing components occur that need to be suppressed. In this work, we propose a novel method that applies the Bandlimited Step (BLEP) technique, effectively minimizing aliasing artifacts introduced by the simulation. The paper provides some insights on the design of a BBD simulation using interpolation at the input for clock rate conversion and, most importantly, shows how BLEP can be effective in reducing unwanted aliasing artifacts. Interpolation is shown to have minor importance in the reduction of spurious components.
Download Spatializing Screen Readers: Extending VoiceOver via Head-Tracked Binaural Synthesis for User Interface Accessibility
Traditional screen-based graphical user interfaces (GUIs) pose significant accessibility challenges for visually impaired users. This paper demonstrates how existing GUI elements can be translated into an interactive auditory domain using high-order Ambisonics and inertial sensor-based head tracking, culminating in a realtime binaural rendering over headphones. The proposed system is designed to spatialize the auditory output from VoiceOver, the built-in macOS screen reader, aiming to foster clearer mental mapping and enhanced navigability. A between-groups experiment was conducted to compare standard VoiceOver with the proposed spatialized version. Non visually-impaired participants (n = 32), with no visual access to the test interface, completed a list-based exploration and then attempted to reconstruct the UI solely from auditory cues. Experimental results indicate that the head-tracked group achieved a slightly higher accuracy in reconstructing the interface, while user experience assessments showed no significant differences in self-reported workload or usability. These findings suggest that potential benefits may come from the integration of head-tracked binaural audio into mainstream screen-reader workflows, but future investigations involving blind and low-vision users are needed. Although the experimental testbed uses a generic desktop app, our ultimate goal is to tackle the complex visual layouts of music-production software, where an head-tracked audio approach could benefit visually impaired producers and musicians navigating plug-in controls.