Download Streaming Spectral Processing with Consumer-Level Graphics Processing Units This paper describes the implementation of a streaming spectral processing system for realtime audio in a consumer-level onboard GPU (Graphics Processing Unit) attached to an off-the-shelf laptop computer. It explores the implementation of four processes: standard phase vocoder analysis and synthesis, additive synthesis and the sliding phase vocoder. These were developed under the CUDA development environment as plugins for the Csound 6 audio programming language. Following a detailed exposition of the GPU code, results of performance tests are discussed for each algorithm. They demonstrate that such a system is capable of realtime audio, even under the restrictions imposed by a limited GPU capability.
Download A Two Level Montage Approach to Sound Texture Synthesis with Treatment of Unique Events In this paper a novel algorithm for sound texture synthesis is presented. The goal of this algorithm is to produce new examples of a given sampled texture, the synthesized textures being of any desired duration. The algorithm is based on a montage approach to synthesis in that the synthesized texture is made up of pieces of the original sample concatenated together in a new sequence. This montage approach preserves both the high level evolution and low level detail of the original texture. Included in the algorithm is a measure of uniqueness, which can be used for the identification of regions in the original texture containing events that are atypical of the texture, and hence avoid their unnatural repetition at the synthesis stage.
Download Fast Signal Reconstruction from Magnitude Spectrogram of Continuous Wavelet Transform Based on Spectrogram Consistency The continuous wavelet transform (CWT) can be seen as a filterbank having logarithmic frequency subbands spacing similar to the human auditory system. Thus, to make computers imitate the significant functions of the human auditory system, one promising approach would be to model, analyze and process magnitude spectrograms given by the CWT. To realize this approach, we must be able to convert a processed or modified magnitude CWT spectrogram, which contains no information about the phase, into a time domain signal specifically for those applications in which the aim is to generate audio signals. To this end, this paper proposes a fast algorithm for estimating the phase from a given magnitude CWT spectrogram to reconstruct an audio signal. The experimental results revealed that the proposed algorithm was around 100 times faster than a conventional algorithm, while the reconstructed signals obtained with the proposed algorithm had almost the same audio quality as those obtained with the previous study.
Download Numerical Simulation of String/Barrier Collisions: The Fretboard Collisions play a major role in various models of musical instruments; one particularly interesting case is that of the guitar fretboard, the subject of this paper. Here, the string is modelled including effects of tension modulation, and the distributed collision both with the fretboard and individual frets, and including both effects of free string vibration, and under finger-stopped conditions, requiring an additional collision model. In order to handle multiple distributed nonlinearities simultaneously, a finite difference time domain method is developed, with a penalty potential allowing for a convenient model of collision within a Hamiltonian framework, allowing for the construction of stable energy-conserving methods. Implementation details are discussed, and simulation results are presented illustrating a variety of features of such a model.
Download An Energy Conserving Finite Difference Scheme for the Simulation of Collisions in Snare Drums In this paper, a physics-based model for a snare drum will be discussed, along with its finite difference simulation. The interactions between a mallet and the membrane and between the snares and the membrane will be described as perfectly elastic collisions. A novel numerical scheme for the implementation of collisions will be presented, which allows a complete energy analysis for the whole system. Viscothermal losses will be added to the equation for the 3D wave propagation. Results from simulations and sound examples will be presented.
Download Physical Modeling of the MXR Phase 90 Guitar Effect Pedal In this study, a famous boxed effect pedal, also called stompbox, for electrical guitars is analyzed and simulated. The nodal DK method is used to create a non-linear state-space system with Matlab as a physical model for the MXR Phase 90 guitar effect pedal. A crucial component of the effect are Junction Field Effect Transistors (JFETs) which are used as variable resistors to dynamically vary the phase-shift characteristic of an allpass-filter cascade. So far, virtual analog modeling in the context of audio has mainly been applied to diode-clippers and vacuum tube circuits. This work shows an efficient way of describing the nonlinear behavior of JFETs, which are wide-spread in audio devices. To demonstrate the applicability of the proposed physical model, a real-time VST audio plug-in was implemented.
Download A Physically-Informed, Circuit-Bendable, Digital Model of the Roland TR-808 Bass Drum Circuit We present an analysis of the bass drum circuit from the classic Roland TR-808 Rhythm Composer, based on physical models of the device’s many sub-circuits. A digital model based on this analysis (implemented in Cycling 74’s Gen˜) retains the salient features of the original and allows accurate emulation of circuit-bent modifications—complicated behavior that is impossible to capture through black-box modeling or structured sampling. Additionally, this analysis will clear up common misconceptions about the circuit, support the design of further drum machine modifications, and form a foundation for circuit-based musicological inquiry into the history of analog drum machines.
Download The Modulation Scale Spectrum and its Application to Rhythm-Content Description In this paper, we propose the Modulation Scale Spectrum as an extension of the Modulation Spectrum through the Scale domain. The Modulation Spectrum expresses the evolution over time of the amplitude content of various frequency bands by a second Fourier Transform. While its use has been proven for many applications, it is not scale-invariant. Because of this, we propose the use of the Scale Transform instead of the second Fourier Transform. The Scale Transform is a special case of the Mellin Transform. Among its properties is "scale-invariance". This implies that two timestretched version of a same music track will have (almost) the same Scale Spectrum. Our proposed Modulation Scale Spectrum therefore inherits from this property while describing frequency content evolution over time. We then propose a specific implementation of the Modulation Scale Spectrum in order to represent rhythm content. This representation is therefore tempo-independent. We evaluate the ability of this representation to catch rhythm characteristics on a classification task. We demonstrate that for this task our proposed representation largely exceeds results obtained so far while being highly tempo-independent.
Download Quad-Based Audio Fingerprinting Robust to Time and Frequency Scaling We propose a new audio fingerprinting method that adapts findings from the field of blind astrometry to define simple, efficiently representable characteristic feature combinations called quads. Based on these, an audio identification algorithm is described that is robust to large amounts of noise and speed, tempo and pitch-shifting distortions. In addition to reliably identifying audio queries that are modified in this way, it also accurately estimates the scaling factors of the applied time/frequency distortions. We experimentally evaluate the performance of the method for a diverse set of noise, speed and tempo modifications, and identify a number of advantages of the new method over a recently published distortioninvariant audio copy detection algorithm.
Download Score-Informed Tracking and Contextual Analysis of Fundamental Frequency Contours in Trumpet and Saxophone Jazz Solos In this paper, we propose a novel algorithm for score-informed tracking of the fundamental frequency over the duration of single tones. The tracking algorithm is based on a peak-picking algorithm over spectral magnitudes and ensures time-continuous f0 -curves. From a set of 19 jazz solos from three saxophone and three trumpet players, we collected a set of 6785 f0 -contours in total. We report the results of two exploratory analyses. First, we compared typical contour feature values among different jazz musicians and different instruments. Second, we analyzed correlations between contour features and contextual parameters that describe the metrical position, the in-phrase position, and additional properties of each tone in a solo.