Download Joint Estimation of Fader and Equalizer Gains of DJ Mixers Using Convex Optimization Disc jockeys (DJs) use audio effects to make a smooth transition from one song to another. There have been attempts to computationally analyze the creative process of seamless mixing. However, only a few studies estimated fader or equalizer (EQ) gains controlled by DJs. In this study, we propose a method that jointly estimates time-varying fader and EQ gains so as to reproduce the mix from individual source tracks. The method approximates the equalizer filters with a linear combination of a fixed equalizer filter and a constant gain to convert the joint estimation into a convex optimization problem. For the experiment, we collected a new DJ mix dataset that consists of 5,040 real-world DJ mixes with 50,742 transitions, and evaluated the proposed method with a mix reconstruction error. The result shows that the proposed method estimates the time-varying fader and equalizer gains more accurately than existing methods and simple baselines.
Download Streamable Neural Audio Synthesis with Non-Causal Convolutions Deep learning models are mostly used in an offline inference fashion. However, this strongly limits the use of these models inside audio generation setups, as most creative workflows are based on real-time digital signal processing. Although approaches based on recurrent networks can be naturally adapted to this buffer-based computation, the use of convolutions still poses some serious challenges. To tackle this issue, the use of causal streaming convolutions have been proposed. However, this requires specific complexified training and can impact the resulting audio quality. In this paper, we introduce a new method allowing to produce non-causal streaming models. This allows to make any convolutional model compatible with real-time buffer-based processing. As our method is based on a post-training reconfiguration of the model, we show that it is able to transform models trained without causal constraints into streaming models. We apply our method on the recent RAVE model as a case study. This model provides high-quality real-time audio synthesis on a wide range of signals and thus is an ideal candidate to evaluate our method. It should be noted that our method is not restricted to RAVE, and can be straightforwardly applied to any convolutional network. We test our approach on multiple music and speech datasets and show that it is faster than overlap-add methods, while having no impact on the generation quality. Finally, we introduce two open-source implementation of our work as Max/MSP and PureData externals, and as a VST audio plugin. This allows to endow traditional digital audio workstations with real-time neural audio synthesis.