A Deep Learning Approach to the Prediction of Time-Frequency Spatial Parameters for Use in Stereo Upmixing

Daniel Turner; Damian Murphy
DAFx-2024 - Guildford
This paper presents a deep learning approach to parametric timefrequency parameter prediction for use within stereo upmixing algorithms. The approach presented uses a Multi-Channel U-Net with Residual connections (MuCh-Res-U-Net) trained on a novel dataset of stereo and parametric time-frequency spatial audio data to predict time-frequency spatial parameters from a stereo input signal for positions on a 50-point Lebedev quadrature sampled sphere. An example upmix pipeline is then proposed which utilises the predicted time-frequency spatial parameters to both extract and remap stereo signal components to target spherical harmonic components to facilitate the generation of a full spherical representation of the upmixed sound field.
Download