Download Comparison of Germanium Bipolar Junction Transistor Models for Real-time Circuit Simulation
The Ebers-Moll model has been widely used to represent Bipolar Junction Transistors (BJTs) in Virtual Analogue (VA) circuits. An investigation into the validity of this model is presented in which the Ebers-Moll model is compared to BJT models of higher complexity, introducing the Gummel-Poon model to the VA field. A comparison is performed using two complementary approaches: on fit to measurements taken directly from BJTs, and on application to physical circuit models. Targeted parameter extraction strategies are proposed for each model. There are two case studies, both famous vintage guitar effects featuring germanium BJTs. Results demonstrate the effects of incorporating additional complexity into the component model, weighing the trade-off between differences in the output and computational cost.
Download Automatic Control of the Dynamic Range Compressor Using a Regression Model and a Reference Sound
Practical experience with audio effects as well as knowledge of their parameters and how they change the sound is crucial when controlling digital audio effects. This often presents barriers for musicians and casual users in the application of effects. These users are more accustomed to describing the desired sound verbally or using examples, rather than understanding and configuring low-level signal processing parameters. This paper addresses this issue by providing a novel control method for audio effects. While a significant body of works focus on the use of semantic descriptors and visual interfaces, little attention has been given to an important modality, the use of sound examples to control effects. We use a set of acoustic features to capture important characteristics of sound examples and evaluate different regression models that map these features to effect control parameters. Focusing on dynamic range compression, results show that our approach provides a promising first step in this direction.
Download Fixed-rate Modeling of Audio Lumped Systems: A Comparison Between Trapezoidal and Implicit Midpoint Methods
This paper presents a comparison framework to study the relative benefits of the typical trapezoidal method with the lesser-used implicit midpoint method for the simulation of audio lumped systems at a fixed rate. We provide preliminary tools for understanding the behavior and error associated with each method in connection with typical analysis approaches. We also show implementation strategies for those methods, including how an implicit midpoint method solution can be generated from a trapezoidal method solution and vice versa. Finally, we present some empirical analysis of the behavior of each method for a simple diode clipper circuit and provide an approach to help interpret their relative performance and how to pick the more appropriate method depending on desirable properties. The presented tools are also intended as a general approach to interpret the performance of discretization approaches at large in the context of fixed-rate simulation.
Download Generalizing Root Variable Choice in Wave Digital Filters with Grouped Nonlinearities
Previous grouped-nonlinearity formulations for Wave Digital Filter (WDF) modeling of nonlinear audio circuits assumed that nonlinear (NL) devices with memoryless voltage–current characteristics were modeled as voltage-controlled current sources (VCCSs). These formulations cannot accommodate nonlinear devices whose equations cannot be written as NL VCCSs, and they cannot accommodate circuits with cutsets composed entirely of current sources (including NL VCCSs). In this paper we generalize independent and dependent variable choice at the root of WDF trees to accommodate both these cases, and review two graph theorems for avoiding forbidden cutsets and loops in general.
Download Block-oriented Gray Box Modeling of Guitar Amplifiers
In this work, analog guitar amplifiers are modeled with an automated procedure using iterative optimization techniques. The digital model is divided into functional blocks, consisting of lineartime-invariant (LTI) filters and nonlinear blocks with nonlinear mapping functions and memory. The model is adapted in several steps. First the filters are measured and afterwards the parameters of the digital model are adapted for different input signals to minimize the error between itself and the analog reference system. This is done for a small number of analog reference devices. Afterwards the adapted model is evaluated with objective scores and a listening test is performed to rate the quality of the adapted models.
Download Virtual Analog Buchla 259 Wavefolder
An antialiased digital model of the wavefolding circuit inside the Buchla 259 Complex Waveform Generator is presented. Wavefolding is a type of nonlinear waveshaping used to generate complex harmonically-rich sounds from simple periodic waveforms. Unlike other analog wavefolder designs, Buchla’s design features five op-amp-based folding stages arranged in parallel alongside a direct signal path. The nonlinear behavior of the system is accurately modeled in the digital domain using memoryless mappings of the input–output voltage relationships inside the circuit. We pay special attention to suppressing the aliasing introduced by the nonlinear frequency-expanding behavior of the wavefolder. For this, we propose using the bandlimited ramp (BLAMP) method with eight times oversampling. Results obtained are validated against SPICE simulations and a highly oversampled digital model. The proposed virtual analog wavefolder retains the salient features of the original circuit and is applicable to digital sound synthesis.
Download Network Variable Preserving Step-size Control in Wave Digital Filters
In this paper a new technique is introduced that allows for the variable step-size simulation of wave digital filters. The technique is based on the preservation of the underlying network variables which prevents fluctuation in the stored energy in reactive network elements when the step-size is changed. This method allows for the step-size variation of wave digital filters discretized with any passive discretization technique and works with both linear and nonlinear reference circuits. The usefulness of the technique with regards to audio circuit simulation is demonstrated via the case study of a relaxation oscillator where it is shown how the variable step-size technique can be used to mitigate frequency error that would otherwise occur with a fixed step-size simulation. Additionally, an example of how aliasing suppression techniques can be combined with physical modeling is given with an example of the polyBLEP antialiasing technique being applied to the output voltage signal of the relaxation oscillator.
Download On the Design and Use of Once-differentiable High Dynamic Resolution Atoms for the Distribution Derivative Method
The accuracy of the Distribution Derivative Method (DDM) [1] is evaluated on mixtures of chirp signals. It is shown that accurate estimation can be obtained when the sets of atoms for which the inner product is large are disjoint. This amounts to designing atoms with windows whose Fourier transform exhibits low sidelobes but which are once-differentiable in the time-domain. A technique for designing once-differentiable approximations to windows is presented and the accuracy of these windows in estimating the parameters of sinusoidal chirps in mixture is evaluated.
Download Nicht-negativeMatrixFaktorisierungnutzendes-KlangsynthesenSystem (NiMFKS): Extensions of NMF-based Concatenative Sound Synthesis
Concatenative sound synthesis (CSS) entails synthesising a “target” sound with other sounds collected in a “corpus.” Recent work explores CSS using non-negative matrix factorisation (NMF) to approximate a target sonogram by the product of a corpus sonogram and an activation matrix. In this paper, we propose a number of extensions of NMF-based CSS and present an open MATLAB implementation in a GUI-based application we name NiMFKS. In particular we consider the following extensions: 1) we extend the NMF framework by implementing update rules based on the generalised β-divergence; 2) We add an optional monotonic algorithm for sparse-NMF; 3) we tackle the computational challenges of scaling to big corpora by implementing a corpus pruning preprocessing step; 4) we generalise constraints that may be applied to the activation matrix shape; and 5) we implement new modes of interacting with the procedure by enabling sketching and modifying of the activation matrix. Our application, NiMFKS and source code can be downloaded from here: https: //
Download Validated Exponential Analysis for Harmonic Sounds
In audio spectral analysis, the Fourier method is popular because of its stability and its low computational complexity. It suffers however from a time-frequency resolution trade off and is not particularly suited for aperiodic signals such as exponentially decaying ones. To overcome their resolution limitation, additional techniques such as quadratic peak interpolation or peak picking, and instantaneous frequency computation from phase unwrapping are used. Parameteric methods on the other hand, overcome the timefrequency trade off but are more susceptible to noise and have a higher computational complexity. We propose a method to overcome these drawbacks: we set up regularized smaller sized independent problems and perform a cluster analysis on their combined output. The new approach validates the true physical terms in the exponential model, is robust in the presence of outliers in the data and is able to filter out any non-physical noise terms in the model. The method is illustrated in the removal of electrical humming in harmonic sounds.