Download Towards Neural Emulation of Voltage-Controlled Oscillators
Machine learning models have become ubiquitous in modeling analog audio devices. Expanding on this line of research, our study focuses on Voltage-Controlled Oscillators of analog synthesizers. We employ black box autoregressive artificial neural networks to model the typical analog waveshapes, including triangle, square, and sawtooth. The models can be conditioned on wave frequency and type, enabling the generation of pitch envelopes and morphing across waveshapes. We conduct evaluations on both synthetic and analog datasets to assess the accuracy of various architectural variants. The LSTM variant performed better, although lower frequency ranges present particular challenges.
Download Neural Sample-Based Piano Synthesis
Piano sound emulation has been an active topic of research and development for several decades. Although comprehensive physicsbased piano models have been proposed, sample-based piano emulation is still widely utilized for its computational efficiency and relative accuracy despite presenting significant memory storage requirements. This paper proposes a novel hybrid approach to sample-based piano synthesis aimed at improving the fidelity of sound emulation while reducing memory requirements for storing samples. A neural network-based model processes the sound recorded from a single example of piano key at a given velocity. The network is trained to learn the nonlinear relationship between the various velocities at which a piano key is pressed and the corresponding sound alterations. Results show that the method achieves high accuracy using a specific neural architecture that is computationally efficient, presenting few trainable parameters, and it requires memory only for one sample for each piano key.