Download The Sounds of the Avian Syrinx - are they Really Flute-Like?
This research presents a model of the avian vocal tract, implemented using classical waveguide synthesis and numerical methods. The vocal organ of the songbird, the syrinx, has a unique topography of acoustic tubes (a trachea with a bifurcation at its base) making it a rather unique subject for waveguide synthesis. In the upper region of the two bifid bronchi lies a nonlinear vibrating membrane – the primary resonator in sound production. Unlike most reed musical instruments, the more significant displacement of the membrane is perpendicular to the directions of airflow, due to the Bernoulli effect. The model of the membrane displacement, and the resulting pressure through the constriction created by the membrane motion, is therefore derived beginning with the Bernoulli equation.
Download A simple, accurate wall loss filter for acoustic tubes
This research presents a uniform approximation to the formulas of Benade and Keefe for the propagation constant of a cylindrical tube, valid for all tube radii and frequencies in the audio range. Based on this approximation, a simple expression is presented for a filter which closely matches the thermoviscous loss filter of a tube of specified length and radius at a given sampling rate. The form of this filter and the simplicity of coefficient calculation make it particularly suitable for real-time music applications where it may be desirable to have tube parameters such as length and radius vary during performance.
Download The Feathered Clarinet Reed
In this research, a method previously In this research, a method previouslyapplied appliedtotoimprove improve a digital simulation of the avian syrinx is adapted to the geometry of the clarinet reed. The clarinet model is studied with particular attention to the case when the reed beats again the lay of the mouthpiece, closing off air flow to the bore once each period. In place of the standard reed table which gives steady-state volume flow as a function of constant pressure difference across the reed, a more realistic dynamic volume flow model is proposed. The differential equation governing volume flow dynamics is seen to have a singularity at the point of reed closure, where both the volume flow and reed channel area become zero. The feathered clarinet reed refers to the method, first used in the syrinx, to smooth or feather the volume flow cutoff in a closing valve. The feathered valve eliminates the singularity and reduces artifacts in the simulated clarinet output.
Download On Vibrato and Frequency (De)Modulation in Musical Sounds
Vibrato is an important characteristic in human musical performance and is often uniquely characteristic to a player and/or a particular instrument. This work is motivated by the assumption (often made in the source separation literature) that vibrato aids in the identification of multiple sound sources playing in unison. It follows that its removal, the focus herein, may contribute to a more blended combination. In signals, vibrato is often modeled as an oscillatory deviation from a center pitch/frequency that presents in the sound as phase/frequency modulation. While vibrato implementation using a time-varying delay line is well known, using a delay line for its removal is less so. In this work we focus on (de)modulation of vibrato in a signal by first showing the relationship between modulation and corresponding demodulation delay functions and then suggest a solution for increased vibrato removal in the latter by ensuring sideband attenuation below the threshold of audibility. Two known methods for estimating the instantaneous frequency/phase are used to construct delay functions from both contrived and musical examples so that vibrato removal may be evaluated.