Download Upcylcing Android Phones into Embedded Audio Platforms There are millions of sophisticated Android phones in the world that get disposed of at a very high rate due to consumerism. Their computational power and built-in features, instead of being wasted when discarded, could be repurposed for creative applications such as musical instruments and interactive audio installations. However, audio programming on Android is complicated and comes with restrictions that heavily impact performance. To address this issue, we present LDSP, an open-source environment that can be used to easily upcycle Android phones into embedded platforms optimized for audio synthesis and processing. We conducted a benchmark study to compare the number of oscillators that can be run in parallel on LDSP with an equivalent audio app designed according to modern Android standards. Our study tested six phones ranging from 2014 to 2018 and running different Android versions. The results consistently demonstrate that LDSP provides a significant boost in performance, with some cases showing an increase of more than double, making even very old phones suitable for fairly advanced audio applications.
Download Neural Audio Processing on Android Phones This study investigates the potential of real-time inference of neural audio effects on Android smartphones, marking an initial step towards bridging the gap in neural audio processing for mobile devices. Focusing exclusively on processing rather than synthesis, we explore the performance of three open-source neural models across five Android phones released between 2014 and 2022, showcasing varied capabilities due to their generational differences. Through comparative analysis utilizing two C++ inference engines (ONNX Runtime and RTNeural), we aim to evaluate the computational efficiency and timing performance of these models, considering the varying computational loads and the hardware specifics of each device. Our work contributes insights into the feasibility of implementing neural audio processing in real-time on mobile platforms, highlighting challenges and opportunities for future advancements in this rapidly evolving field.