Download Real-Time System for Sound Enhancement in Noisy Environment
The noise can affect the listening experience in many real-life situations involving loudspeakers as a playback device. A solution to reduce the effect of the noise is to employ headphones, but they can be annoying and not allowed on some occasions. In this context, a system for improving the audio perception and the intelligibility of sounds in a domestic noisy environment is introduced and a real-time implementation is proposed. The system comprises three main blocks: a noise estimation procedure based on an adaptive algorithm, an auditory spectral masking algorithm that estimates the music threshold capable of masking the noise source, and an FFT equalizer that is used to apply the estimated level. It has been developed on an embedded DSP board considering one microphone for the ambient noise analysis and two vibrating sound transducers for sound reproduction. Several experiments on simulated and real-world scenarios have been realized to prove the effectiveness of the proposed approach.
Download Real-Time Implementation of a Linear-Phase Octave Graphic Equalizer
This paper proposes a real-time implementation of a linear-phase octave graphic equalizer (GEQ), previously introduced by the same authors. The structure of the GEQ is based on interpolated finite impulse response (IFIR) filters and is derived from a single prototype FIR filter. The low computational cost and small latency make the presented GEQ suitable for real-time applications. In this work, the GEQ has been implemented as a plugin of a specific software, used for real-time tests. The performance of the equalizer has been evaluated through subjective tests, comparing it with a filterbank equalizer. For the tests, four standard equalization curves have been chosen. The experimental results show promising outcomes. The result is an accurate real-time-capable linear-phase GEQ with a reasonable latency.