Download Neural Music Instrument Cloning From Few Samples
Neural music instrument cloning is an application of deep neural networks for imitating the timbre of a particular music instrument recording with a trained neural network. One can create such clones using an approach such as DDSP [1], which has been shown to achieve good synthesis quality for several instrument types [2]. However, this approach needs about ten minutes of audio data from the instrument of interest (target recording audio). In this work, we modify the DDSP architecture and apply transfer learning techniques used in speech voice cloning [3] to significantly reduce the amount of target recording audio required. We compare various cloning approaches and architectures across durations of target recording audio, ranging from four to 256 seconds. We demonstrate editing of loudness and pitch as well as timbre transfer from only 16 seconds of target recording audio. Our code is available online1 as well as many audio examples.2
Download DDSP-Based Neural Waveform Synthesis of Polyphonic Guitar Performance From String-Wise MIDI Input
We explore the use of neural synthesis for acoustic guitar from string-wise MIDI input. We propose four different systems and compare them with both objective metrics and subjective evaluation against natural audio and a sample-based baseline. We iteratively develop these four systems by making various considerations on the architecture and intermediate tasks, such as predicting pitch and loudness control features. We find that formulating the control feature prediction task as a classification task rather than a regression task yields better results. Furthermore, we find that our simplest proposed system, which directly predicts synthesis parameters from MIDI input performs the best out of the four proposed systems. Audio examples and code are available.